ALSO PUBLISHED ONLINE: www.highfrequencyelectronics.com DECEMBER2014

HIGH FREQUENCY E L E C T R O N I C S

SOFTWARE-DESIGNED INSTRUMENTS REVOLUTION

IN THIS ISSUE:

Statistical Analysis for On-Site RF Power Measurement

Guest Editorial: MM-Waves, Past, Present, and Future

Book Review: Controlling Radiated Emissions

New Products

Product Highlights

ALSO PUBLISHED ONLINE AT: www.highfrequencyelectronics.com

DECEMBER2014 Vol. 13 No. 12

22 Feature Article

Software-Designed Instrument Revolution

By Bill Driver and Vimal M. Fernandez

Software-designed instrumentation is helping achieve record test-time reductions.

Feature Article

30

Statistical Analysis for On-Site RF Power Measurement

By Tim Holt

In The News

Highlighting the

Terahertz Monolithic

dB Control, Custom

36 New Products

MMIC, and more.

Integrated Circuit, AR,

12

Today's multi-function RF power meter bears little resemblance to the earliest versions.

16 Featured Products

Including Analog Devices, Pulse Electronics, Planar Monolithic Industries, Coilcraft, Rohde & Schwarz.

60

Guest Editorial

SAGE Millimeter CEO Yonghui Shu on the future of millimeterwave.

12 In the News	16 Featured Products

64 Advertiser Index

36

New Products

Featuring Keysight Technologies, OML, SAGE Millimeter, Renaissance Electronics, Anritsu, Hittite.

6 Editorial

8 Meetings & Events

Millimeter-wave: Its Past, Present and Future

Yonghui Shu President and CEO SAGE Millimeter

The millimeter-wave spectrum has many advantages over its lower-frequency microwave counterpart. Widely accepted to comprise 30 to 300 GHz, millimeter-wave

offers smaller wavelength and wider bandwidth. Each feature has its own advantages. Small wavelength is attractive to users because it allows more available spectrum; is the choice technology for small components used in missiles, satellites, and aircraft; and has narrower beamwidth that allows greater angular resolution and precision in target tracking and discrimination. Wider bandwidth results in higher data rates in communications systems; higher range resolution and target identification in radar systems; greater sensitivity and resolutions in passive image systems; and higher immunity to jamming and interference.

"Niche" Technology?

Despite all of these advantages, millimeter-wave technology has always been seen as expensive and even unapproachable. The newness of the technology led many to consider the marketspace as "niche." Traditionally, this frequency spectrum was mainly used for military, aerospace and scientific research programs and equipment. The applications were generally limited to weapon guidance, seekers, radars, military communication equipment, remote control, remote sensing, radiometry, material science and research and development.

However in recent years, technological advances especially those improvements related to simulation and design tools, semiconductor device performance and consistency and manufacturing methods—have allowed millimeter-wave technology up to 100 GHz, to reach the final stage of maturity. I believe that millimeter-wave technologies are finding **increasing** opportunities in traditional military and aerospace system applications and **explosive** opportunities in commercial applications. Today, the excitement surrounding "internet connectivity," "safety and security," "smart homes," and "smart clothing" shows that millimeter-wave technologies and products have more commercial and consumeroriented applications than we have ever experienced. Research and development in the areas of high data rate communications, passive imaging, transportation safety and management systems, automotive ACC radar, security systems, commercial small satellites and test/measurement equipment, etc., confirms that the industry is healthy and growing.

MM-Wave Customer Base Expanding

SAGE Millimeter has empirical data to support these trends. This year, our customer list is not limited to government agencies, defense contractors, large commercial manufacturers, research organizations, and universities; it has also expanded to internet service providers, smart phone and wireless network manufacturers, and semiconductor manufacturers. We know that more development and demand will emerge in the frequency bands of 58 to 64 GHz and 71 to 86 GHz. That's why we feel that 2015 will be an important year for the millimeter-wave industry as our technology matures and applications become more clearly defined.

Perhaps one of the most promising commercial applications in 2015 and beyond is E-band products for "Last Mile" along with V Band "WiGig" because of how they will liberate users. As we become increasingly inseparable from our smartphones, the demand for faster media streaming and delivery will push the industry to provide solutions. With this technology, users who previously had to rely upon wired connections can now experience the same quality of connectivity with much less infrastructure and cost. The technologies in these frequency bands are becoming more mature, and consumers are pushing for both more cost-effectiveness and higher quality. Meantime, I expect that traditional applications in the area of military and aerospace will benefit from commercial development and will become increasingly robust as we continue to understand how this technology becomes more affordable.

Multi-Disciplinary Coordination

In order to complement these trends, industry leaders, government agencies, and legislators are working together to make this transition a reality. Of course, our

Advertiser Index

Company	Page	Company	Page
Advanced Switch Technology	45	Mini-Circuits	2, 3
Aeroflex Inmet	1	Mini-Circuits	21
AMCOM	26	Mini-Circuits	23
AmpliTech	24	Mini-Circuits	31
Avtech	45	Mini-Circuits	37
CEL	25	Mini-Circuits	62.63
Cernex	18	Molex	C3
Coilcraft	11	National Instruments	5
C. W. Swift & Associates	C2	Pulsar Microwaya	20
C. W. Swift/SRI Connector Gage	29	PolComm Tochnologies	
dBm	7		
Dudley Lab	45	кг вау	45
Fairview Microwave	15	Richardson RFPD	27
Herotek	14	SAGE Millimeter	13
IMS2015	61	Satellink	44
IW Microwave	35	Sector Microwave	45
Keysight Technologies	17	SGMC Microwave	39
Keysight Technologies	19	Skyworks	C4
Micro Lambda Wireless	9	Wenteq Microwave	45
Microwave Components	41		

The ad index is provided as an additional service by the publisher, who assumes no responsibility for errors or omissions.

High Frequency Electronics (USPS 024-316) is published monthly by Summit Technical Media, LLC, 3 Hawk Dr., Bedford, NH 03110.

Vol. 13 No. 12 December 2014. Periodicals Postage Paid at Manchester, NH and at additional mailing offices. POSTMASTER: Send address corrections to High Frequency Electronics, PO Box 10621, Bedford, NH 03110-0621.

Subscriptions are free to qualified technical and management personnel involved in the design, manufacture and distribution of electronic equipment and systems at high frequencies. Copyright © 2014 Summit Technical Media, LLC

HIGH FREQUENCY DESIGN | Guest Editorial

(Continued from page 60)

industry's challenges have and always will be continued technological advancement and skilled personnel development. On the technology side, our industry is no different from any other—we need to continue to study, innovate, and improve.

Specific goals include developing higher frequency and higher performance semiconductors, designing and implementing better packaging and manufacturing techniques, and reducing cost. The larger challenge that needs to be addressed is the shortage of experienced and next-generation RF and microwave engineers and technicians who are specially trained to address technology, product development and realization challenges.

It was recently reported that the average RF engineer is 51 years old and has worked in the industry for 25 years. This confirms my opinion, published previously, that educational institutions and career-development centers need to collaborate with industry leaders to design new course works and programs focused on practical skill development. These programs need to mirror those found in other disciplines such as IT, programming, and mechanical engineering. Because our industry is unique and specialized, real attention needs to be given to students so that they can enter the industry with not only a strong foundation in theory, but also the hands-on ability necessary for success.

- FIND OUR ADVERTISERS' WEB SITES USING HFELINKTM
- 1. Go to our company information Web site: www.HFeLink.com, or
- 2. From www.highfrequencyelectronics.com, click on the HFeLink reminder on the home page
- 3. Companies in our current issue are listed, or you can choose one of our recent issues
- 4. Find the company you want ... and just click!
- 5. Or ... view our Online Edition and simply click on any ad!