SOM-35308320-28-S1

1/3

Ka-Band Mechanically Tuned Gunn Oscillator

SOM-35308320-28-S1 is a Ka-Band, mechanically tuned bandwidth Gunn oscillator that utilizes a high-performance GaAs Gunn diode and proprietary cavity design to deliver +20 dBm typical power with low AM/FM noise and harmonic emissions. The oscillator has a center frequency of 35 GHz and a mechanical tuning range of ±4000 MHz. Compared to its multiplier based counterparts, the Gunn oscillator is a lower cost alternative and a cleaner source. The "S1" Gunn oscillator model is equipped with a self-locking set screw for frequency tuning. Models with a micrometer for quick frequency tuning and test bench applications are available under model number with a "M1" affix for use in system integration applications. The performance of the oscillator can be further enhanced by adding an optional integrated isolator, Gunn oscillator modulator/regulator, and temperature heater.

Electrical Specifications:

Parameter	Minimum	Typical	Maximum
Center Frequency		35 GHz	
Power Output		+20 dBm	
Mechanical Tuning Range		±4000 MHz	
Bias Voltage		+5.5 V _{DC}	+6 V _{DC}
Bias Current		550 mA	
Specification Temperature		+25°C	
Operating Temperature	0°C		+50°C

Mechanical Specifications:

Item	Specification	SUPPLEMENTAL DETAILS
RF Ports	WR-28 Waveguide with UG-599/U Flange	
Bias Port	SMA (F)	
Case Material	Aluminum	
Finish	Gold Plated	
Weight	3.2 Oz	
Outline	OM-SA-C	

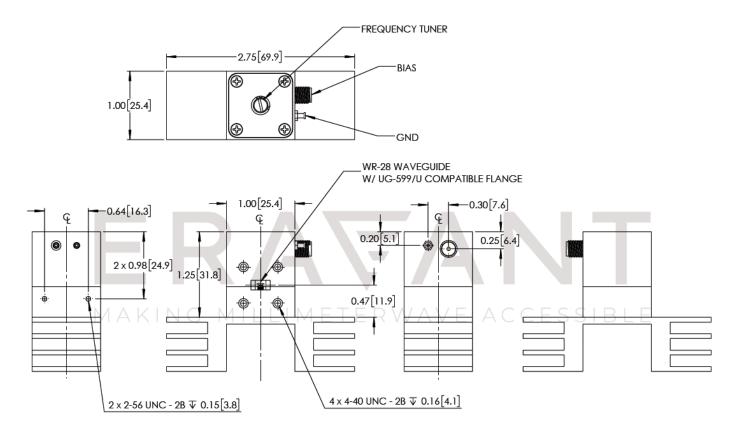
ECCN EAR99

FEATURES

Bandwidth

APPLICATIONS
Test Source
Signal Generation
Lab Test Setups

 Low AM/FM Noise and Harmonics


Broad Mechanical Tuning

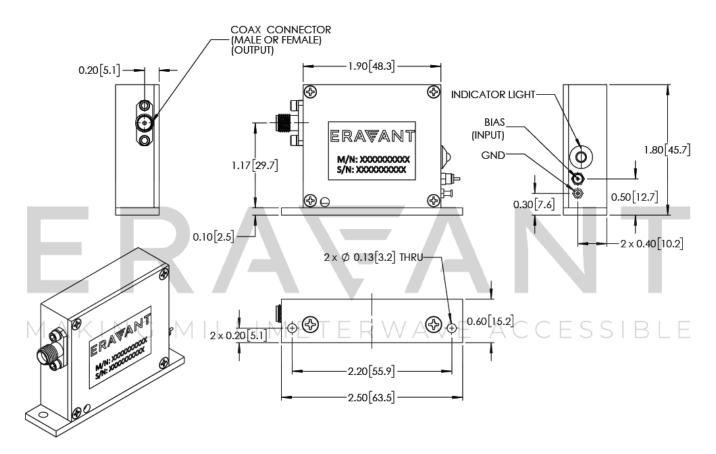
ERAVANT

SOM-35308320-28-S1

ERA\ANT

Mechanical Outline: Unless otherwise specified, all dimensions are in inches [millimeters])

NOTE:


- All data presented is collected from a sample lot. It is for illustration only. Actual data varies unit to unit.
- The data given above was tested under case temperature +35 °C.
- Eravant Gunn oscillator regulator, **SOR-R3**, is highly recommended to prevent the Gunn oscillator damage due to possible over voltage and/or reverse bias. The outline of the regulator is shown in the appendix section below.
- Eravant reserves the right to change the information presented without notice.

CAUTION:

- Reversing polarity bias will destroy the device
- Exceeding absolute maximum rating shown will damage the device
- The case temperature of the device should not exceed +50 °C. Use an additional heatsink or fan if necessary.
- When handling coax connectors, proper torque, 8.0 ± 0.4 inch-pounds (0.90 ± 0.02 Nm), should be applied. Eravant torque wrench, model SCH-08008-S1, is highly recommended.
- The device is static sensitive. Always follow ESD rules when working with the device
- Any foreign objects in the waveguide will cause performance degradation and possible device damage.

SOM-35308320-28-S1

Appendix: Outline of Gunn Oscillator Regulator, Model SOR-R3

ERAFANT MAKING MILLIMETER WAVE ACCESSIBLE