

Ka-Band Mechanically Tuned Gunn Oscillator

SOM-35308317-28-M1 is a Ka-Band, mechanically tuned bandwidth Gunn oscillator that utilizes a high-performance GaAs Gunn diode and proprietary cavity design to deliver +17 dBm typical power with low AM/FM noise and harmonic emissions. The oscillator has a center frequency of 33 GHz and a mechanical tuning range of ±4 GHz. Compared to its multiplier based counterparts, the Gunn oscillator is a lower cost alternative and a cleaner source. The Gunn oscillator is equipped with a micrometer for quick frequency tuning when used as a bench top unit. Models with a self-locking set screw for frequency tuning are available under a different model number for use in system integration applications. The performance of the oscillator can be further enhanced by adding an optional integrated isolator, Gunn oscillator modulator/regulator, and temperature heater.

Electrical Specifications:

Parameter	Minimum	Typical	Maximum
Center Frequency		35 GHz	
Power Output		+17 dBm	
Mechanical Tuning Range		±4 GHz	
Bias Voltage		+5.5 V _{DC}	+6 V _{DC}
Bias Current		550 mA	
Specification Temperature		+25°C	
Operating Temperature	0°C		+50°C

Mechanical Specifications:

Item	Specification
RF Ports	WR-28 Waveguide with UG-599/U Flange
Bias Port	SMA (F)
Case Material	Aluminum
Finish	Gold Plated
Weight	3.8 Oz
Outline	OM-MA-C-M

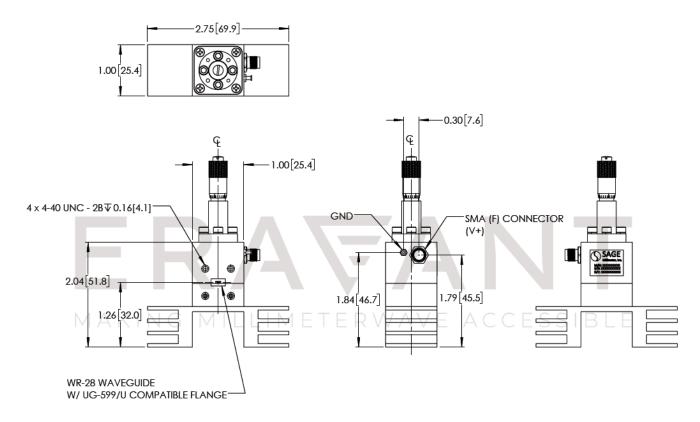
ECCN

EAR99

FEATURES

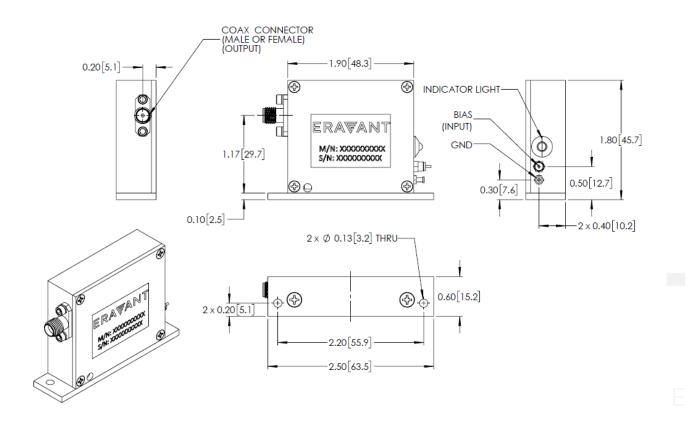
- Low AM/FM Noise and Harmonics
- Broad Mechanical Tuning Bandwidth
- Micrometer Tuner

APPLICATIONS


- Test Source
- Signal Generation
- Lab Test Setups

SUPPLEMENTAL DETAILS

Mechanical Outline: Unless otherwise specified, all dimensions are in inches [millimeters])


NOTE:

- All data presented is collected from a sample lot. It is for illustration only. Actual data varies unit to unit.
- The data given above was tested under case temperature +35 °C.
- Always set micrometer reading to around 33 GHz when turning on the oscillator to ensure correct mode operation.
- Eravant Gunn oscillator regulator, **SOR-R3**, is highly recommended to prevent the Gunn oscillator damage due to possible over voltage and/or reverse bias. The outline of the regulator is shown in the appendix section below.
- Eravant reserves the right to change the information presented without notice.

CAUTION:

- Reversing polarity bias will destroy the device
- Exceeding absolute maximum rating shown will damage the device
- The case temperature of the device should not exceed +50 °C. Use an additional heatsink or fan if necessary.
- When handling coax connectors, proper torque, 8.0 ± 0.4 inch-pounds (0.90 ± 0.02 Nm), should be applied. Eravant torque wrench, model SCH-08008-S1, is highly recommended.
- The device is static sensitive. Always follow ESD rules when working with the device
- Any foreign objects in the waveguide will cause performance degradation and possible device damage.
- The case temperature of the device shall never exceed +85 °C. Use an additional heatsink or fan if necessary.

Appendix: Outline of Gunn Oscillator Regulator, Model SOR-R3

ERAFANT

MAKING MILLIMETERWAVE ACCESSIBLE