

W-Band Low Noise Amplifier, 90 to 110 GHz, 22 dB Gain, 5 dB NF

Description:

Model SBL-9031142250-1010-S1 is a low noise amplifier with a typical small signal gain of 22 dB and a nominal noise figure of 5 dB across the frequency range of 90 to 110 GHz. The DC power requirement for the amplifier is $+8 \text{ V}_{DC}/50 \text{ mA}$. The mechanical configuration offers a right angle structure with WR-10 waveguides and UG-387/U-M flanges. Other port configurations, such as an in line structure with WR-10 waveguides or 1 mm connectors, are also available under different model numbers.

Features:

- State-of-the-Art Noise Figure
- **Broadband Performance**
- High Gain

Applications:

- Low Noise Receivers
- **Communication Systems**
- **Test Equipment**

Electrical Specifications:

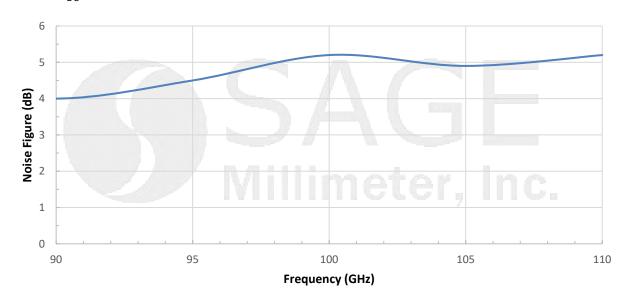
Parameter	Minimum	Typical	Maximum
Frequency Range	90 GHz		110 GHz
Gain		22 dB	
Noise Figure		5 dB	
P_{1dB}		-5 dBm	
P _{in}			+5 dBm
Input Return Loss		8 dB	
Output Return Loss		6 dB	
DC Voltage	+6 V _{DC}	+8 V _{DC}	+15 V _{DC}
DC Supply Current		50 mA	
Specification Temperature		+25 °C	_
Operating Temperature	0 °C		+50 °C

Mechanical Specifications:

Item	Specification	
Input Port	WR-10 Waveguide with UG-387/U-M Flange	
Output Port	WR-10 Waveguide with UG-387/U-M Flange	
Bias Port	Solder Pin	
Case Material	Aluminum	
Finish	Gold Plated	
Weight	1.3 Oz	
Size	1.10" (W) X 1.70" (L) X 0.50" (H)	
Outline	BG-SW-1	

SAGE Millimeter, Inc.

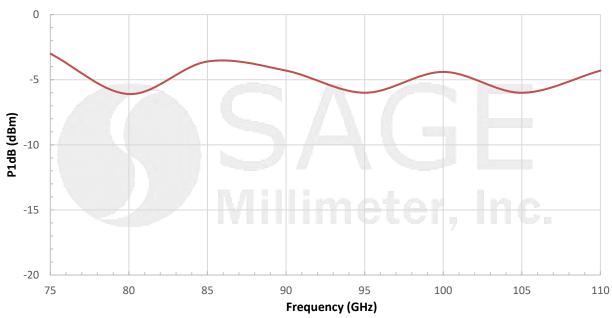
W-Band Low Noise Amplifier, 90 to 110 GHz, 22 dB Gain, 5 dB NF

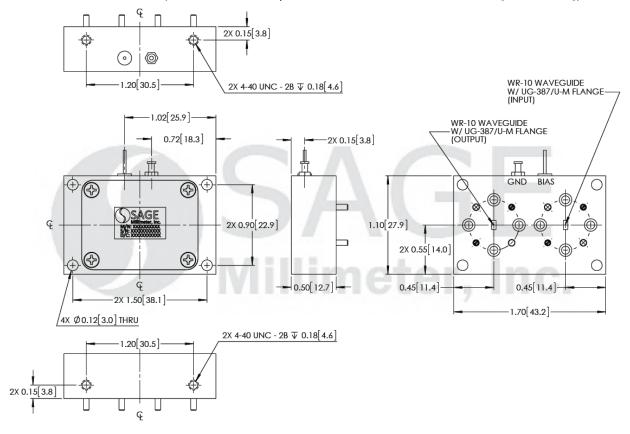

Typical Gain and Return Loss vs. Frequency

Bias: $+8 V_{DC}/50 \text{ mA}$

Typical Noise Figure vs. Frequency

Bias: $+8V_{DC}/50 \text{ mA}$


ESI


W-Band Low Noise Amplifier, 90 to 110 GHz, 22 dB Gain, 5 dB NF

Typical P_{1dB} vs. Frequency

Bias: +8V/50 mA

Mechanical Outline: (Unless otherwise specified, all dimensions are in inches [millimeters])

W-Band Low Noise Amplifier, 90 to 110 GHz, 22 dB Gain, 5 dB NF

Note:

- All data presented is from a sample lot. Actual data may vary unit to unit.
- All testing was performed under +25 °C case temperature.
- Eravant reserves the right to change the information presented without notice.
- Other mechanical configurations are available under different model numbers.

Caution:

- Exceeding absolute maximum ratings shown will damage the device.
- The device is static sensitive. Always follow ESD rules when working with the device.
- The case temperature of the device shall never exceed +50 °C. Use proper heatsink or fan if necessary.
- Any foreign objects in the waveguide will cause performance degradation and may damage the device.

ESD